Four years ago, the mathematician Maria Chudnovsky faced an all-too-common predicament: how to seat 120 wedding guests, some of whom did not get along, at a dozen or so conflict-free tables. Luckily, the problem fell squarely in her realm of expertise. She conceived of the guests as nodes in a network, with links between incompatible nodes. Her task was to color in the nodes using a spectrum of colors representing the different tables. As long as connected nodes never had the same color, there would be no drama at the reception.

Networks of related objects, be they nodes or wedding guests, are known to mathematicians as “graphs,” and graph coloring is the much-studied act of partitioning these objects into conflict-free sets. Most graphs, with their tangle of interconnections, are impossible to color with a limited palette. The larger they are, the more colors you need. Moving from node to node, alternating between colors, you inevitably get into traffic jams that force you to pull new hues out of the box. Likewise, in the real world, seating charts, meeting schedules and delivery routes can seldom be made optimal. But since the 1960s, mathematicians have escaped these coloring frustrations by working with so-called perfect graphs, which “behave very nicely with respect to coloring,” said Chudnovsky, a 38-year-old math professor at Princeton University.

Perfect graphs are, by definition, colorable with the most limited palette possible. When coloring a graph, every node in a mutually connected cluster, or “clique,” must receive a distinct color, so any graph needs at least as many colors as the number of nodes in its largest clique. In most graphs, you need many more colors than this. But in perfect graphs, you do not. As the French graph theorist Claude Berge defined them in 1961, perfect graphs require a number of colors exactly equal to the size of their largest clique. The “chromatic number” must also equal the “clique number” for every subset of a perfect graph formed by deleting some of its nodes. This perfection rarely arises in the real world, but the property has made perfect graphs much easier to analyze and prove theorems about than their imperfect counterparts.

Yet, after half a century, an obvious question about perfect graphs remains unanswered: How do you actually color them? “Perfect graphs are the graphs that are designed to work well for coloring, so it’s really annoying that we don’t know a good way to color perfect graphs,” said Paul Seymour, a graph theorist also at Princeton. “For a mathematician, a problem like that is a magnet. You want to be able to fix the issue.”

Now, Chudnovsky and collaborators are taking significant steps toward a theorem for coloring all perfect graphs. They have spent the past few years “nibbling off different pieces of the pie,” said Alan Tucker, a mathematician at Stony Brook University, proving coloring theorems for ever-larger subclasses of perfect graphs. This month, in their most general result yet, Chudnovsky, together with Irene Lo, Frédéric Maffray, Nicolas Trotignon and Kristina Vušković, posted a theorem for coloring all perfect graphs except those containing tricky arrangements of four nodes called “squares.” “It gives confidence that the general case might be solved,” said Gérard Cornuéjols, a mathematician at Carnegie Mellon University.

*Andrew Silver for Quanta Magazine*

Interactive: Select a color and then a node to color in this simple perfect graph. When the entire graph is colored in, “Check” that no connected nodes share the same color.